
# Industry 4.0: Big Data, Machine Learning and Artificial Intelligence in Cell Culture

Seongkyu Yoon, University of Massachusetts, Lowell, USA Madhuresh Sumit, Sanofi, USA Ravali Raju, Amgen, USA

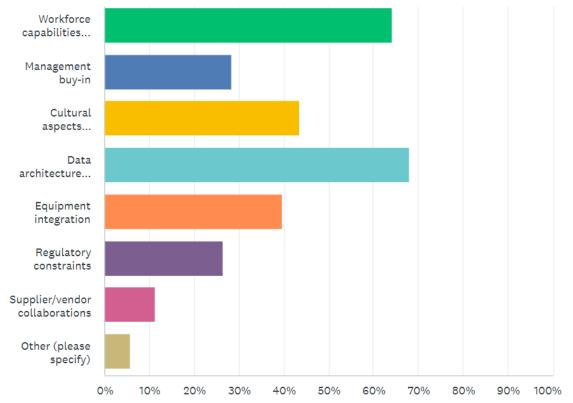
## **Workshop Outline**

- Welcome and intro to the session 5 mins
- What Industry 4.0 means, survey outcome and how it can be applied to cell culture -10 mins
- Case Studies Introduction-15 mins
- Case studies breakout
  - 30 min to work in smaller group
- Debrief- 20 mins
- Conclusion-10 mins

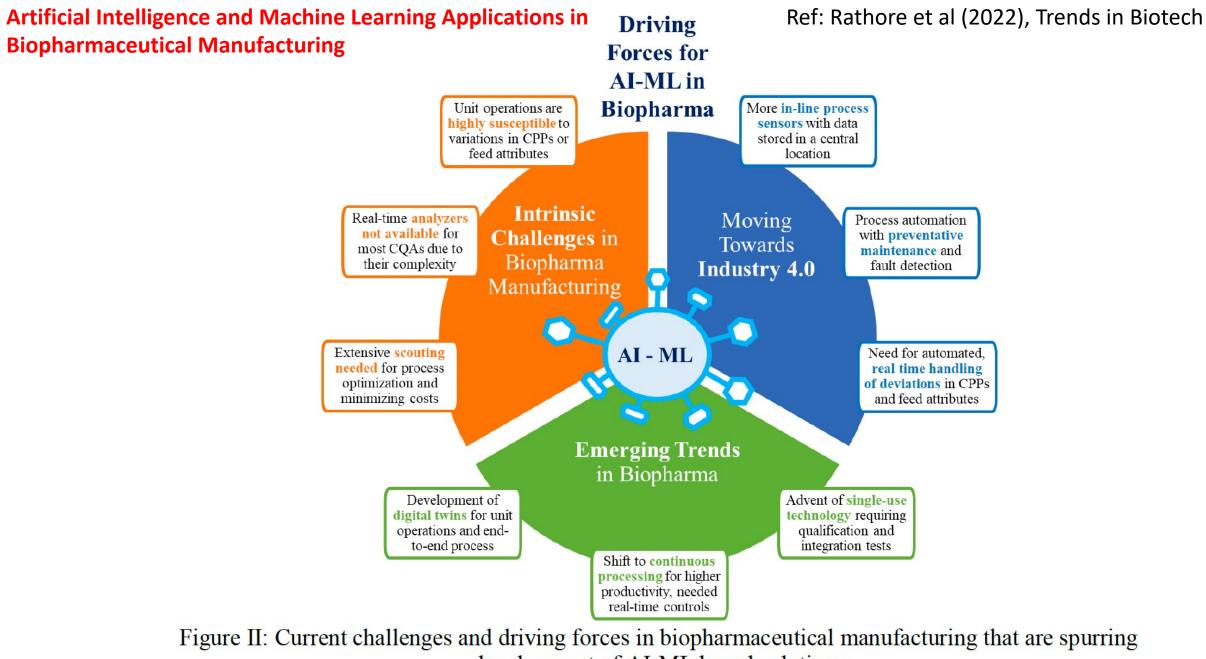
## Industry 4.0 can drive productivity and operational efficiencies



## Industry 4.0: Faster, Smarter and Sustainable Productivity

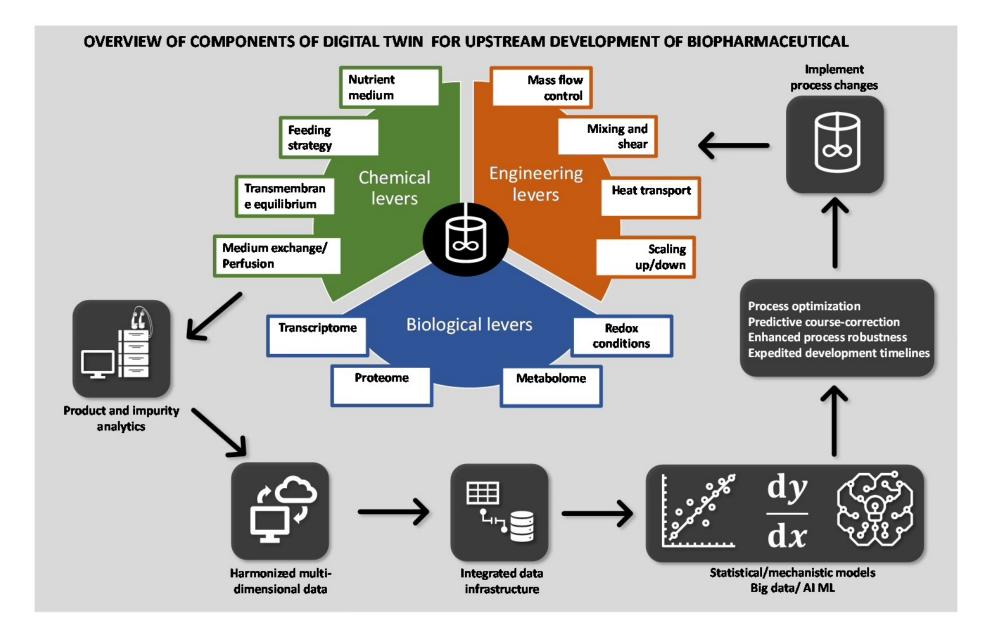

## **Survey Results**

- 20-30% of participants were very familiar with terms such as iOT, machine learning, virtual reality etc
- Applications to cell culture could include digital twin models, automated workflows for process/media development, process models etc
- ~90% of participants are actively engaged or starting to get engaged in Industry 4.0
- ~70% find some tools like big data and AI very valuable for applications in cell culture
- ~90% see path to implementation in 10 years


## **Survey Results**

What are the top 2 main drivers for transforming to Industry 4.0 concepts for cell culture applications (choose only two)?

Improved productivity... Better flexibility/... Increased profitability To please Sr Management Other (please specify) 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% What do you see as some of the biggest challenges in implementing Industry 4.0 concepts in your day-to-day work (check top 3)?




Answered: 52 Skipped: 277



development of AI-ML based solutions

#### **Digital Twin, Ideal Case**



#### 7

## **Industry 4.0 Workshop Case Studies**

- Problems & Challenges
- Approaches taken
- Outcomes
- Discussion outcomes:

Alternative approaches (tools, data, analysis) Expected outcomes (tangible and intangible) Hurdles

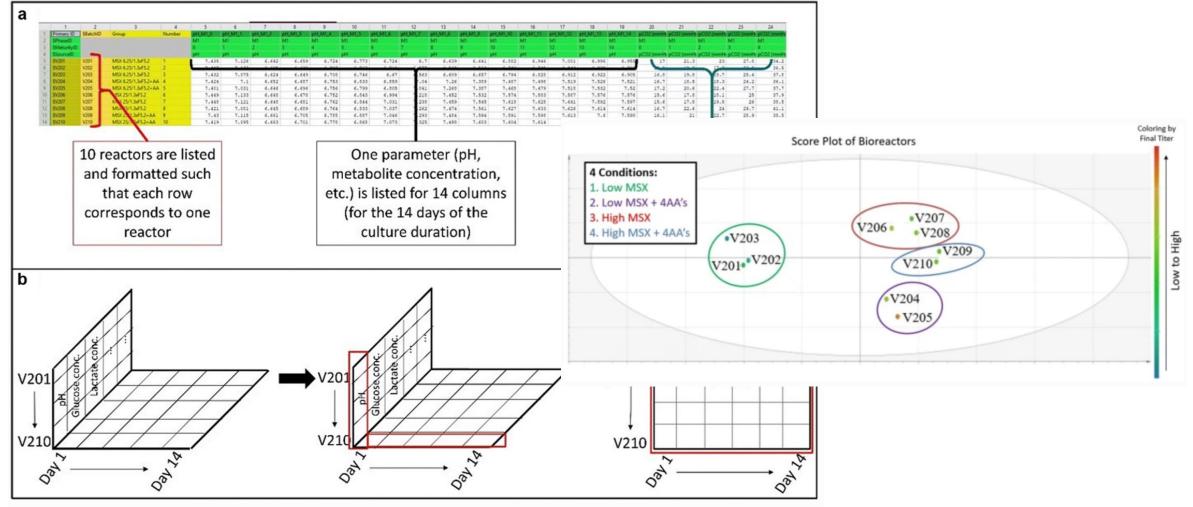
Ref: Bioresources and Bioprocessing, 2020

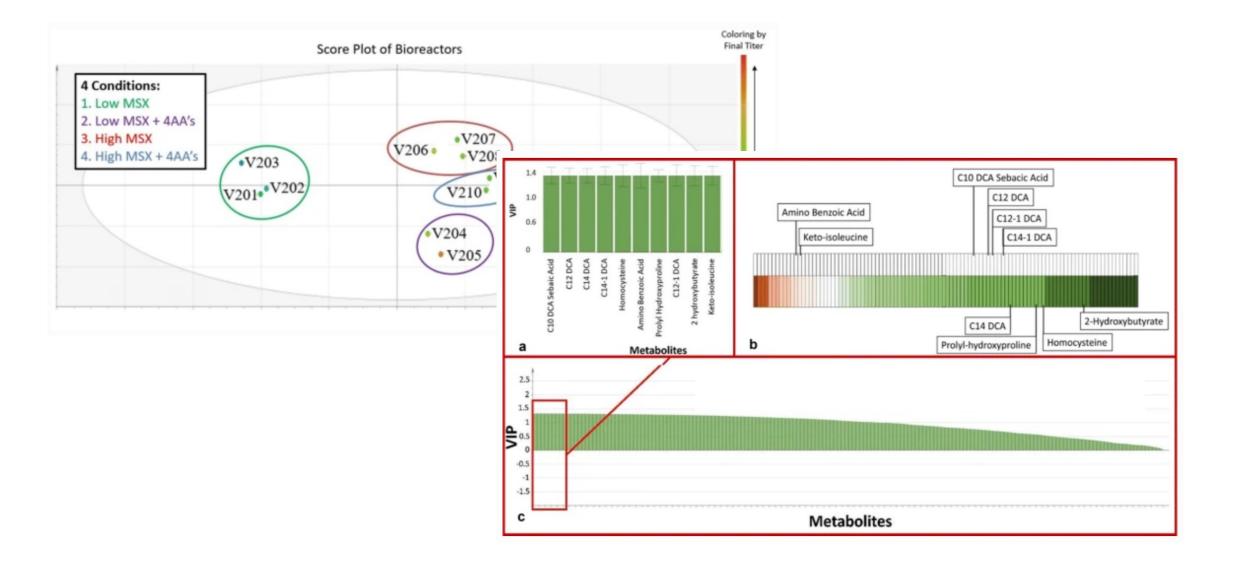
## Problems and Challenges

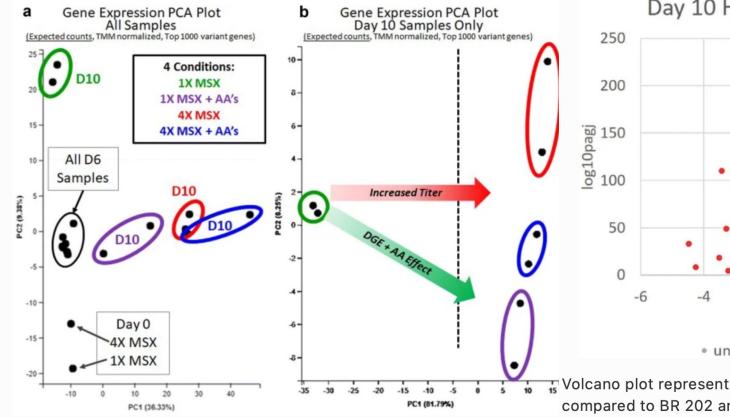
Strategies for promoting higher titers and avoiding the accumulation of inhibitors are needed.

Metabolic pathway analysis shows the correlation between a given amino acid and the associated metabolite

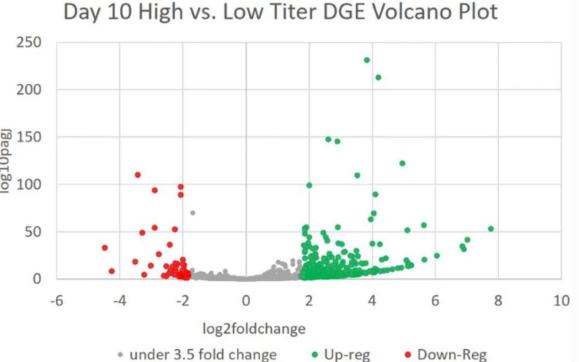
Monitoring and supplementing amino acid levels in real time, ensuring that concentrations within the bioreactor remain within specified limits.


Integration of transcriptomics analysis with metabolite profiling and metabolic pathway analysis can serve as validation method


#### Approaches Taken (Experimentation)


| Condition | Reactor<br>label       | Expansion medium           | Basal<br>medium | Feed medium                                                           |
|-----------|------------------------|----------------------------|-----------------|-----------------------------------------------------------------------|
| 1         | V201, V202<br>and V203 | Seed medium with 1X MSX    | Basal<br>medium | Feed medium                                                           |
| 2         | V204 and<br>V205       | Seed medium with 1X MSX    | Basal<br>medium | Feed medium with an increased concentration of Ser, Thr, Tyr, and Lys |
| 3         | V206, V207<br>and V208 | Seed medium<br>with 4X MSX | Basal<br>medium | Feed medium                                                           |
| 4         | V209 and<br>V210       | Seed medium<br>with 4X MSX | Basal<br>medium | Feed medium with an increased concentration of Ser, Thr, Tyr, and Lys |

#### Datasets collected:


- UHPLC-mass spectrometric metabolomics data collection and analysis
- CQA;
- Bioreactor daily operation data;
- Daily transcriptomics data
- Approaches for analysis
  - Batch modeling method to integrate daily analysis and CQA data along with bioprocessing data
  - Pathway enrichment analysis
  - Transcriptomics







PCA plots of **a** all bioreactor conditions at day 0, 6, and 10, and **b** day 10 sample only



Volcano plot representing differential gene expression of 204 and 205 (+AA) when compared to BR 202 and 203 (no AA). Green encircled dots in the represent the 489 total upregulated genes in V204 and V205 (with a fold change cut-off of 3.5

with p-adj < 0.005), while red encircled dots represent the 67 total downregulated genes with the same cut-off criteria

#### Table 4 KEGG pathway analysis summary

From: <u>Bigdata analytics identifies metabolic inhibitors and promoters for productivity improvement and optimization of monoclonal antibody (mAb)</u> production process

| Gene                 | Description                           | Fold change (p value) |  |  |  |
|----------------------|---------------------------------------|-----------------------|--|--|--|
| Gly, Ser, Thr m      | netabolism                            |                       |  |  |  |
| Sdsl                 | N-Sulphoglucosamine sulphohydrolase 1 | +1.89 (7.31E – 3)     |  |  |  |
| Tyrosine meta        | bolism                                |                       |  |  |  |
| Fadh1                | Acylpyruvase FAHD1, mitochondrial     | +9 (9.47E - 3)        |  |  |  |
| Fah                  | Fumarylacetoacetase isoform X3        | +5.54 (8.95E – 34)    |  |  |  |
| Lysine degrad        | ation                                 |                       |  |  |  |
| Echs1 <sup>a,b</sup> | Enoyl-CoA hydratase 1                 | +6.08 (8.22E – 9)     |  |  |  |
| Ogdh <sup>C</sup>    | 2-oxoglutarate dehydrogenase          | +3.02 (1.48E – 56)    |  |  |  |
| Hadh <sup>a,b</sup>  | Hydroxyacyl-coenzyme A dehydrogenase  | +1.96 (6.31E – 13)    |  |  |  |
| Gcdh <sup>a</sup>    | Glutaryl-CoA dehydrogenase            | +1.28 (1.11E – 1)     |  |  |  |
| TCA cycle            |                                       |                       |  |  |  |
| Pck2                 | Phosphoenolpyruvate carboxykinase 2   | +3.09 (3.84E - 10)    |  |  |  |
| Pdhb                 | Pyruvate dehydrogenase                | +1.75 (1.43E – 6)     |  |  |  |
| Dlat                 | Dihydrolipoamide S-acetyltransferase  | +1.13 (1.91E – 1)     |  |  |  |
| Fatty acid met       | abolism/degradation                   |                       |  |  |  |
| Oxsm <sup>b</sup>    | 3-oxoacyl-ACP synthase                | +3.44 (1.28E – 5)     |  |  |  |
| Acadsb <sup>a</sup>  | acyl-CoA dehydrogenase                | +1.44 (1.02E – 3)     |  |  |  |
|                      |                                       |                       |  |  |  |

<sup>a</sup>Genes also involved in fatty acid degradation pathway

<sup>b</sup>Genes also involved in fatty acid metabolism

<sup>c</sup>Genes also involved in TCA cycle. Fold change values included here only represent differentially expressed genes in V205, the highest titer condition overall

#### Outcomes

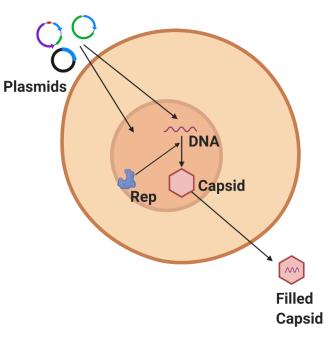
- Promoting and inhibiting metabolites and corresponding AA were identified
- Provided strategy for productivity improvement and feeding strategies
- Genes differentially upregulated in the higher condition, were shown to be involved in amino acid-related metabolic pathways as well as energy production pathways
- Validation experimentation confirmed the finding

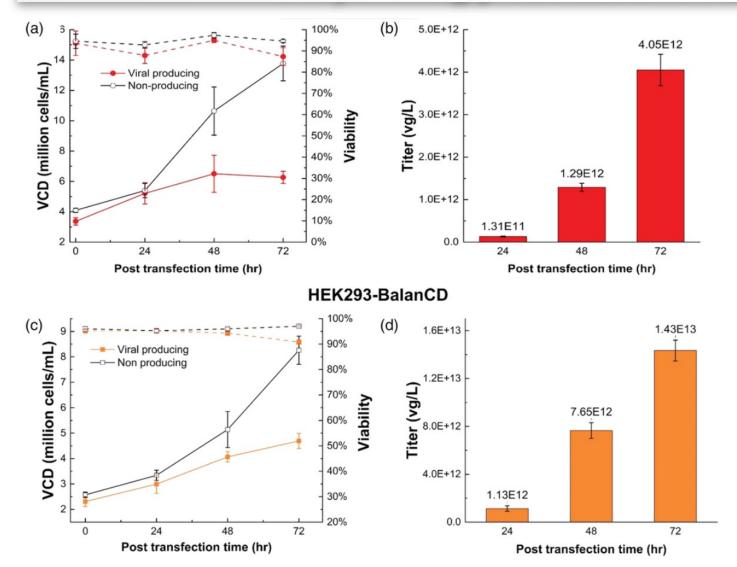
## **Brainstorming Topics**

- Alternative approaches to tackle the challenges (method, data, analysis, ..)
- Expected outcomes (specific business value, intangible benefits, ..)
- Difficulties (technologies, tools, ..)

#### Ref: Biotechnology Progress, 2023

#### Problems and Challenges


Low volumetric productivity of AAV generation in cell cultur limiting the number of doses that can be manufactured from bioreactors


#### Approaches taken

Develop strategy for medium supplementation for improvir AAV production by a Transcriptomics study.

Understand the cellular features for supporting AAV production.

Modulating pathways associated rAAV production via medium supplements.





**Cell growth profile and genome titer** for both AMBIC and BalanCD cell cultures post-transfection.

(a) -log10(P) 0 234 6 10 GO:1903706: regulation of hemopoiesis GO:0035456: response to interferon-beta WP5039: SARS-CoV-2 innate immunity evasion and cell-specific immune response hsa05169: Epstein-Barr virus infection GO:0009617: response to bacterium GO:0034340: response to type I interferon WP5115: Network map of SARS-CoV-2 signaling pathway GO:0050778: positive regulation of immune response R-HSA-449147: Signaling by Interleukins GO:0034341: response to interferon-gamma R-HSA-1169410: Antiviral mechanism by IFN-stimulated genes GO:0032648: regulation of interferon-beta production GO:0002697: regulation of immune effector process GO:0006954: inflammatory response GO:0002831: regulation of response to biotic stimulus WP619: Type II interferon signaling R-HSA-913531: Interferon Signaling hsa05168: Herpes simplex virus 1 infection hsa05322: Systemic lupus erythematosus GO:0052372: modulation by symbiont of entry into host log10(P) (b) 0 234 6 10 M5884: NABA CORE MATRISOME GO:0006664: glycolipid metabolic process GO:0007610: behavior R-HSA-1630316: Glycosaminoglycan metabolism GO:0001568: blood vessel development GO:0015718: monocarboxylic acid transport GO:0070848: response to growth factor GO:0010232: vascular transport GO:0006066: alcohol metabolic process R-HSA-1442490: Collagen degradation GO:0048729: tissue morphogenesis GO:0042176: regulation of protein catabolic process GO:0071695: anatomical structure maturation R-HSA-8957275: Post-translational protein phosphorylation GO:0007167: enzyme-linked receptor protein signaling pathway R-HSA-5173105: O-linked glycosylation GO:0042552: myelination GO:0006790: sulfur compound metabolic process GO:0001667: ameboidal-type cell migration GO:0007411: axon guidance

Screenshot

**Enriched upregulated (a) and downregulated (b) clusters** in the viral-producing states based on the gene ontology database for both AMBIC and BalanCD cell cultures.

Differentially expressed genes in both systems with a 1.5-fold change threshold and *p*-adj. values <0.01 were processed for ontology analysis. The figure shows the comparison of the AMBIC and BalanCD cell cultures **Table 1**. Summary of identified and top ranked significantly regulated genes and pathwaysbased on fold change and p-adj values.

| Regulated pathways<br>for viral production                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Involved genes            | <b>Biological functions</b>                                                             |                      | Potentia                               | al strateg          | ies             | m                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------|----------------------|----------------------------------------|---------------------|-----------------|-----------------------|
| Antiviral immune <u>RSAD2</u> , OAS,<br>response IFIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | Defense response to virus and negative regulate viral genome replication                | Cell engineering     |                                        |                     |                 |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | Activated due to accumulation of unfold protein<br>and formation of protein aggregation |                      | Cell engineering,<br>medium supplement |                     |                 |                       |
| Cell cycle arrest<br><u> GADD45A.</u><br><u> BRINP2</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           | Induced when cells are under stressful growth condition                                 |                      |                                        | Medium supplement   |                 |                       |
| DNA damage<br>response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PPP1R15A,<br>DDIT3, DTX3L | Activated when DNA damage mach<br>recognizes foreign DNAs                               | Medium supplement    |                                        |                     | Figure          |                       |
| Jbiquitin-proteasome<br>system UBR1, UBR2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | Eliminate viral protein and ensure protein quality                                      |                      | Cell engineering,<br>medium supplement |                     |                 |                       |
| <ul> <li>SAM 5'-dA</li> <li>CTP SAM 5'-d</li></ul> |                           |                                                                                         |                      |                                        |                     |                 | (TCA)<br>otion rate o |
| and a provide the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | cyclic ADP-ribose         |                                                                                         | Post<br>transfection |                                        | P-adj value         | <u>CMPK2</u> FC | P-adj value           |
| b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D NAD" VADH               | Figure 3. Anti-viral immune response                                                    | Day1<br>Day2         | 51.02<br>665.59                        | 6.37e-8<br>4.43e-31 | <br>23.93       | <br>1.067e-24         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Malate MDH Oxaloace       | - RSAD involved ddhCTP production.                                                      | Day3                 | 188.20                                 | 6.57e-34            | 17.29           | 1.818e-14             |

21

E

### Outcomes

This study compares the transcriptomes of **AAV-producing and non-producing** groups over time using different sources of parental HEK293 cells. **A transcriptomic variance** was observed.

Their transcriptomic features reveal pathways, including **innate immune responses, cell stress responses, and specific metabolisms** that potentially impact rAAV production in parental HEK293 cells.

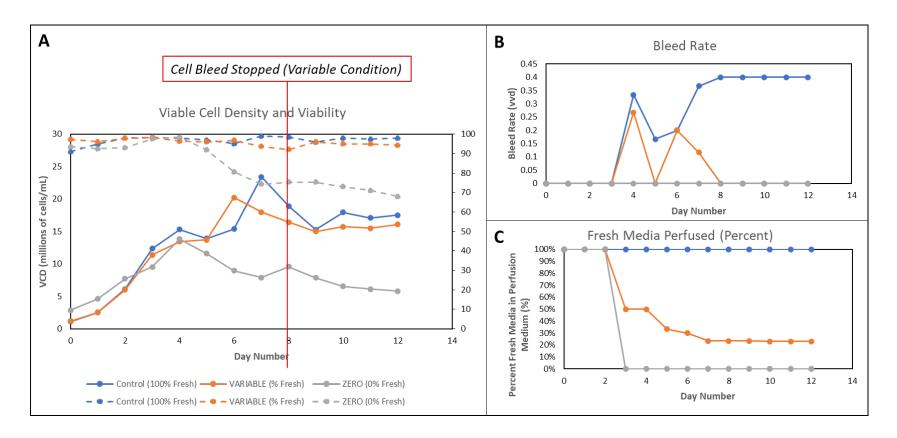
The **antiviral immune response** is one of the most significant bottlenecks identified in viral production.

Future investigations should consider host cell metabolism for AAV production. It is also critical to understand the metabolic pathways related to viral production and the accumulation of inhibitory metabolites that restrict viral productivity.

## **Brainstorming Topics**

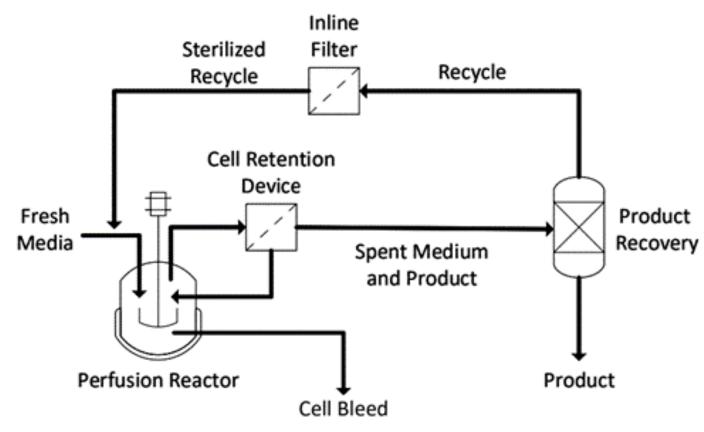
- Alternative approaches to tackle the challenges (method, data, analysis, ..)
- Expected outcomes (specific business value, intangible benefits, ..)
- Difficulties (technologies, tools, ..)

#### Problems and Challenges


**Perfusion processes**, in mammalian cell culture production platforms, are traditionally run with a constant fresh media supply, a cell bleed, and a harvest stream as the primary inputs and outputs of the bioreactor.

However, perfusion-based bioreactors generally **require significant amounts of cell culture media**, which can significantly increase media costs

in perfusion, **the short residence time of the media** within the bioreactor implies that components within the media are not completely consumed by cells.

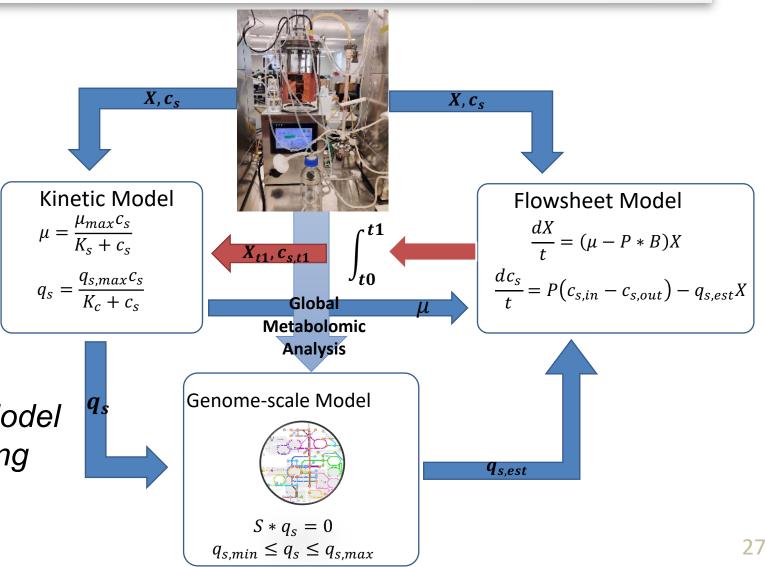

Yet, the adoption of achieving steady state viable cell density within perfusion processes as a method to **control CQAs (critical quality attributes**) is not widely adopted across the biopharmaceutical industry.

#### Approaches



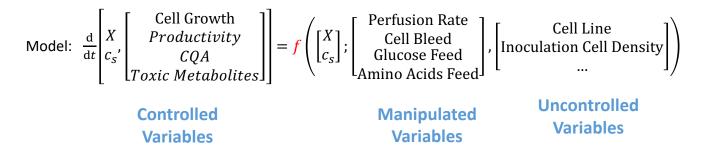
This shake flask study demonstrated that a recirculation rate of 77% could enable for no cell bleed and steady state VCD to be achieved.

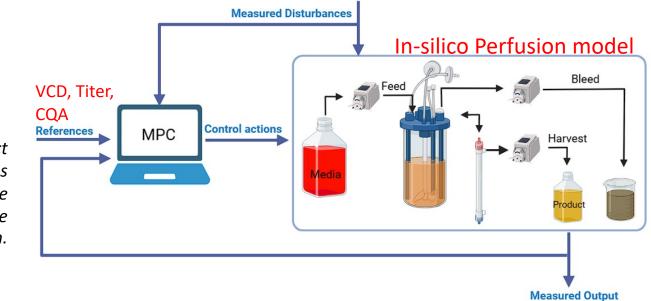
### Approaches




A new integrated continuous *biomanufacturing platform for* continuous production of therapeutic proteins in bioreactors at fixed volumes and cell concentrations for extended periods (30 – 90 days) with immediate capture in initial chromatography and recirculation of spent media

## Approaches


#### Multiscale Model


Gene level: Genome Scale Model Cellular Level: Kinetic Modeling Unit Operation: Flowsheeting



## **Online optimal/model-predictive control**

Given an identified model...





... we continuously select the next control actions which maximize the predicted value of the objective function.

## Outcomes (Expected)

Innovative and advanced technologies for manufacturing biologics utilizing novel platforms, process analytical technologies, and mathematical modeling.

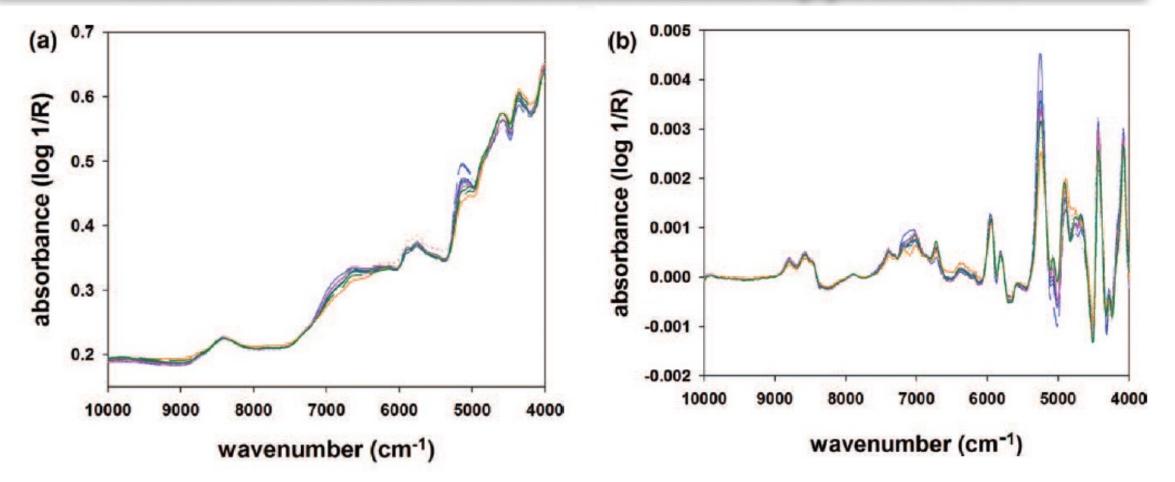
A unique approach to optimize media usage and directly control the glycan profiles of a monoclonal antibody utilizing the recirculation rate of spent media coupled with a digital twin model

Provide further information on the process and its effects on the glycan profile of the product.

## **Brainstorming Topics**

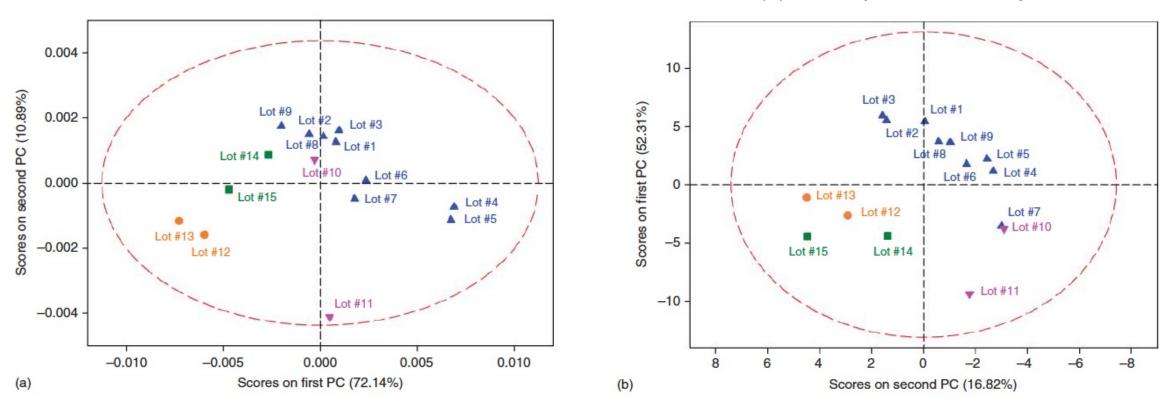
- Alternative approaches to tackle the challenges (method, data, analysis, ..)
- Expected outcomes (specific business value, intangible benefits, ..)
- Difficulties (technologies, tools, ..)

#### Ref: Biotechnology Progress, 2012


#### Problems and Challenges

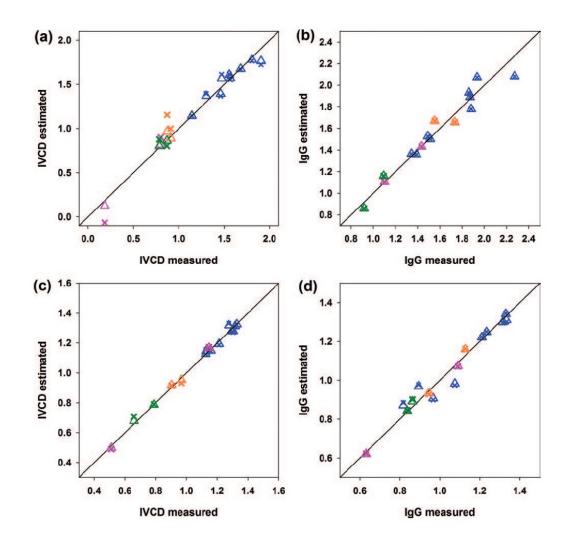
Understanding variability in raw materials and their impacts on product quality is of critical importance in the biopharmaceutical manufacturing processes

Simple, fast, and robust methods to evaluate the raw materials are necessary in order to reduce process variability and improve final product quality in mammalian cell cultures.


#### Approaches

A comprehensive screening tool for soy hydrolysates using near-infrared spectra, with a special emphasis on the prediction of cell culture performance under the conditions of varying soy dosage and different cell lines.




Near-infrared spectra of soy hydrolysate produced from multiple production lots and manufacturing vendors.

(a) Score plot of near-infrared spectra



(b) Score plot of bioassay data

Ref: Lee et al. 2012, Biotechnology progress 28 (3), 824-832



iVCD and igG were predicted with PLS model built with NIR spectra taken with soy hydrolysate

## **Brainstorming Topics**

- Alternative approaches to tackle the challenges (method, data, analysis, ..)
- Expected outcomes (specific business value, intangible benefits, ..)
- Difficulties (technologies, tools, ..)

## **Brainstorming Case Studies (30 min)**

- Case Study 1: Bigdata analytics identify metabolic inhibitors and promoters for mAb productivity improvement
- Case Study 2: Transcriptomics Studies Coupled with Medium Optimization to Address the Bottleneck in the Cellular Physiology for AAV Production
- Case Study 3: Direct Control of Glycan Site Occupancy through Media Usage Optimization and Digital Twin Modeling
- Case Study 4: Estimation of raw material performance in mammalian cell culture using near infrared spectra combined with chemometrics approaches

### **Brainstorming Debriefs (20 min)**

- Case Study 1: Group 1
- Case Study 2: Group 2
- Case Study 3: Group 3
- Case Study 4: Group 4

### **Online Survey for Consensus**



Join at slido.com #7386502

## **Online Survey for Consensus**

**Online Poll** 

## **Concluding Remarks**

Slido Poll Results (Please see a separate file for details)

| Γ                                                                                          |                                               |                     |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                          | Bioph                                                                                                                                                                                                                                                                                           | armaceutica                                                                                                                                                                                                                   | Manufact                                                                                                                                                    | uring                                                                                                                                                                                                                      |                                                                    |
|--------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| and applications                                                                           | APPLICATIONS IN<br>BIOPHARMA<br>MANUFACTURING |                     | <ul> <li>Optimization of unit operations</li> <li>Real time control of bioreactor, chromatography, membrane processes</li> <li>Fault detection</li> </ul>                                                                                                            | <ul> <li>Analysis of<br/>spectroscopic data<br/>(UV/FTIR/NIR/MIR)</li> <li>Real time control of<br/>bioreactor,<br/>chromatography,<br/>membrane processes</li> <li>Batch evolution</li> <li>[17]</li> </ul>                             | <ul> <li>Improved quantification<br/>of critical quality<br/>attributes (CQAs) from<br/>analytical tools<br/>including HPLC and<br/>LC-MS [25]</li> </ul>                                                                                                                                       | <ul> <li>Optimization of unit operations</li> <li>Real time control of bioreactor, chronnatography, membrane processes</li> <li>Fault detection         <ul> <li>[17, 35-37, 40-46, 54-60, 62, 63, 78]</li> </ul> </li> </ul> | Quantify spatial<br>distance between<br>batches and deviations<br>relative to a<br>benchmarking batch for<br>an industrial<br>manufacturing process<br>[26] | • None                                                                                                                                                                                                                     | Analysis of<br>spectroscopic data from<br>cell culture bioreactors |
| tages, limitations,                                                                        | WEAKNESSES                                    |                     | <ul> <li>Poor performance<br/>in case of non-<br/>linear<br/>relationships</li> <li>Non flexible to<br/>incorporate<br/>complex pattern</li> <li>Other algorithms<br/>can easily<br/>outperform</li> </ul>                                                           | <ul> <li>Sensitive to<br/>scaling</li> <li>High risk of<br/>neglecting real<br/>correlations</li> </ul>                                                                                                                                  | <ul> <li>Memory<br/>intensive and<br/>slow</li> <li>Need expertise<br/>for tuning<br/>hyperparameters</li> <li>Not suitable for<br/>large scale<br/>database</li> </ul>                                                                                                                         | <ul> <li>Large amount of<br/>data required</li> <li>Computationally<br/>extensive</li> <li>Need expertise<br/>for tuning</li> <li>Outliers affect<br/>performance</li> </ul>                                                  | <ul> <li>Memory<br/>intensive</li> <li>Underperforms<br/>when higher<br/>dimensionality</li> </ul>                                                          | <ul> <li>Data should<br/>represent<br/>variations well</li> <li>Probability<br/>outputs are not<br/>precise</li> <li>Basic assumption<br/>of independence<br/>of each feature is<br/>not true for all<br/>times</li> </ul> | Difficult to<br>interpret new<br>components                        |
| Table 1: Most popular AI-ML algorithms and their advantages, limitations, and applications | SIRENGTHS                                     | Supervised Learning | <ul> <li>Easy/straightforward<br/>implementation</li> <li>Easily updated based<br/>on data availability</li> <li>Overfitting can be<br/>avoided by<br/>regularization</li> </ul>                                                                                     | <ul> <li>Ability to handle<br/>more descriptor<br/>parameters than<br/>compounds</li> <li>High predictive<br/>accuracy</li> </ul>                                                                                                        | <ul> <li>Nonlinear boundary<br/>conditions can be<br/>modelled</li> <li>Overfit in high<br/>dimensionality design<br/>space can be avoided</li> <li>Good performance<br/>when classes can be<br/>separable especially<br/>binary classification</li> <li>Less impact of<br/>outliers</li> </ul> | <ul> <li>Adaptable to many applications</li> <li>Easily combined with in-silico models for training</li> <li>Many hybrid approaches for integrating ANN with other techniques (PI S, SVM, etc.)</li> </ul>                    | <ul> <li>Simple and requires<br/>no assumption for<br/>data</li> </ul>                                                                                      | <ul> <li>Performs good in real time predictions</li> <li>Easy implementation with high dimensionality data</li> <li>Applicable for scale up/scale down based on dataset</li> </ul>                                         | Improves predictive     performance                                |
| pular AI-ML algorit                                                                        | DESCRIPTION                                   |                     | <ul> <li>Statistical technique<br/>that uses<br/>explanatory<br/>variables to predict<br/>the outcome of a<br/>response variable</li> <li>Regression model is<br/>built after assuming<br/>the shape of the<br/>model space (linear,<br/>nonlinear, etc.)</li> </ul> | <ul> <li>Projection method<br/>based on singular<br/>value decomposition<br/>that projects<br/>multivariable data<br/>into smaller<br/>coordinate space and<br/>then perform</li> <li>Suitable for highly<br/>correlated data</li> </ul> | <ul> <li>Supervised machine<br/>learning technique,<br/>applied for<br/>classification</li> <li>Effective for high<br/>dimensionality<br/>problems with<br/>unstructured semi<br/>structured data</li> </ul>                                                                                    | <ul> <li>Comprises of input<br/>layer, hidden layer,<br/>and output layer</li> <li>Hidden layer has<br/>weights that<br/>transform input into<br/>a quantity that can<br/>be used by output<br/>layer.</li> </ul>             | <ul> <li>Simple and requires<br/>no assumption for<br/>data</li> </ul>                                                                                      | <ul> <li>A classification<br/>technique based on<br/>Bayes' Theorem</li> <li>Does predictions<br/>assuming that the<br/>presence of a feature<br/>is unrelated to the<br/>presence of any<br/>other feature</li> </ul>     | Method of finding a<br>linear combination<br>of features to        |
| Table 1: Most po                                                                           | TECHNIQUE                                     |                     | Multiple<br>Linear/Nonlinear/Logistic<br>Regression<br>(MLR/NLR/LR)                                                                                                                                                                                                  | Partial Least Squares<br>(PLS)                                                                                                                                                                                                           | Support Vector Regression<br>(SVR)                                                                                                                                                                                                                                                              | Arthrial Neural Networks<br>(ANN)                                                                                                                                                                                             | <b>K</b><br>karest Neighbours<br>(kNN)                                                                                                                      | Naïve Bayes                                                                                                                                                                                                                | Linear Discriminant<br>Analysis (LDA)                              |
|                                                                                            |                                               |                     | 851                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                               |                                                                                                                                                             | Ref: R                                                                                                                                                                                                                     | atho                                                               |

### Artificial Intelligence and Machine Learning Applications in

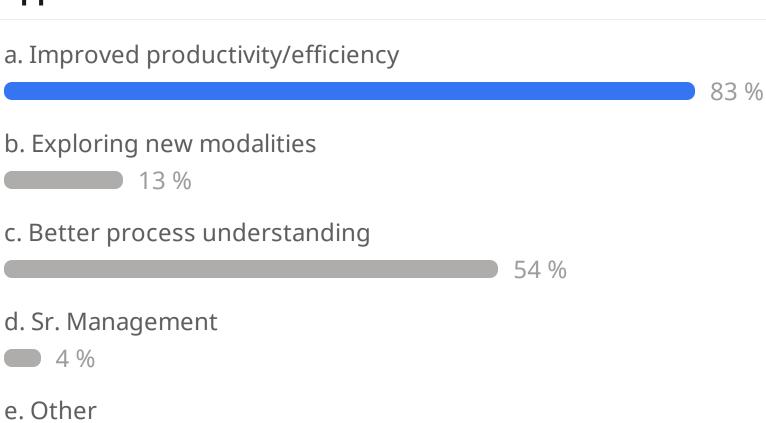
Ref: Rathore et al (2022), Trends in Biotech

|                                                                            |                                                                                                                                                                                                                                                                 | UNSUPERVISED LEARNING                                                                                                                                                                     | 7.0                                                                                                                                                                                              |                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>DCA</b><br>Principal Component<br>Analysis (PCA)                        | <ul> <li>Unsupervised<br/>algorithm used for<br/>dimensionality<br/>reduction &amp;<br/>applicable on noisy<br/>data</li> <li>Based on Pearson<br/>correlation<br/>coefficient and<br/>follows the same<br/>assumptions</li> </ul>                              | <ul> <li>Versatile</li> <li>Fast and simple<br/>application</li> </ul>                                                                                                                    | <ul> <li>Difficult to<br/>interpret new<br/>components</li> <li>Manual tuning of<br/>threshold</li> </ul>                                                                                        | <ul> <li>Clustering of process data for different unit operations</li> <li>Scale-up and scale-down modelling</li> <li>Fault detection [17]</li> </ul>                                                                                      |
| Hierarchical Clustering                                                    | <ul> <li>Unsupervised<br/>algorithm used for<br/>partitioning objects<br/>into homogenous<br/>groups</li> <li>No dimensionality<br/>reduction involved<br/>unlike PCA</li> </ul>                                                                                | <ul> <li>Scales well to all datasets</li> <li>Does not assume globular clusters</li> </ul>                                                                                                | <ul> <li>Number of<br/>clusters needs to<br/>be specified</li> </ul>                                                                                                                             | <ul> <li>Integration of<br/>spectroscopic and<br/>bioreactor data for<br/>clustering of batches</li> <li>Classification of<br/>batches to predict batch<br/>failure: trigger cleaning-<br/>in-place in<br/>manufacturing setups</li> </ul> |
| к-Means                                                                    | <ul> <li>Unsupervised<br/>algorithm used for<br/>partitioning objects<br/>into homogenous<br/>groups</li> <li>Aims to classify a<br/>dataset into k<br/>clusters where k is<br/>fixed by determining<br/>the best locations for<br/>k number of data</li> </ul> | <ul> <li>Fast implementation</li> <li>Simple and flexible algorithm</li> </ul>                                                                                                            | <ul> <li>Poor performance<br/>in case the<br/>underlying<br/>clusters are not<br/>globular</li> </ul>                                                                                            | <ul> <li>Rapid prediction of<br/>facility fit issues</li> <li>Integration of<br/>spectroscopic and<br/>bioreactor data for<br/>clustering of batches<br/>[30]</li> </ul>                                                                   |
| Density-based Spatial<br>Clustering of Applications<br>with Noise (DBSCAN) | <ul> <li>Unsupervised<br/>algorithm used for<br/>partitioning objects<br/>into homogenous<br/>groups<br/>or chroups points that<br/>are close to each<br/>other based on<br/>distance</li> </ul>                                                                | <ul> <li>Does not assume globular clusters</li> <li>Scalable performance</li> </ul>                                                                                                       | <ul> <li>Sensitive tuning parameters</li> </ul>                                                                                                                                                  | • None                                                                                                                                                                                                                                     |
| Local Outlier Factor<br>(LOF)                                              | <ul> <li>Unsupervised<br/>algorithm used for<br/>partitioning objects<br/>into homogenous<br/>groups</li> <li>Outliers identified<br/>based on distance<br/>measurements</li> </ul>                                                                             | <ul> <li>Good performance<br/>during practice</li> <li>Non-linear<br/>relationships can be<br/>captured</li> <li>Robust performance<br/>in case of datasets<br/>having outlier</li> </ul> | <ul><li>Unconstrained</li><li>Prone to<br/>overfitting</li></ul>                                                                                                                                 | • None                                                                                                                                                                                                                                     |
|                                                                            |                                                                                                                                                                                                                                                                 | REINFORCEMENT LEARNING                                                                                                                                                                    | g                                                                                                                                                                                                |                                                                                                                                                                                                                                            |
| Q-Learning                                                                 | Search-based     algorithm aiming to                                                                                                                                                                                                                            | <ul> <li>Preserve original data<br/>features</li> <li>Model-free approach</li> </ul>                                                                                                      | <ul> <li>Complex</li> <li>Does not guarantee</li> </ul>                                                                                                                                          | <ul> <li>Optimization of process flow diagram</li> </ul>                                                                                                                                                                                   |
|                                                                            | heuristically find an<br>optimal approach<br>• After each step, the<br>maximum expected<br>future rewards are<br>used to make the<br>next decision                                                                                                              |                                                                                                                                                                                           | optimality of the solution                                                                                                                                                                       | <ul> <li>Optimization of unit<br/>operation control to<br/>handle process<br/>variability</li> <li>[23, 64,66-74,76]</li> </ul>                                                                                                            |
| Bef: Ratho<br>Frends in                                                    | <ul> <li>Search-based<br/>algorithms aiming to<br/>heuristically find the<br/>optimal/ near<br/>optimal solution</li> </ul>                                                                                                                                     | <ul> <li>Applicable to high dimensionality dataset</li> <li>Preserve original data features</li> <li>Model-free approach</li> </ul>                                                       | <ul> <li>Complex</li> <li>Does not<br/>guarantee<br/>optimality of the<br/>solution</li> <li>Multi-objective<br/>optimization<br/>requires careful<br/>inspection for<br/>convergence</li> </ul> | <ul> <li>Optimization of<br/>bioreactor conditions</li> <li>Optimization of media<br/>composition for<br/>bioreactor<br/>[31,32]</li> </ul>                                                                                                |
| ore<br>Bio                                                                 |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                           |                                                                                                                                                                                                  |                                                                                                                                                                                                                                            |

f: Rathore et al (2022), ends in Biotech

# CCE Workshop: Industry 4.0

23 - 26 Apr 2023


Poll results

### Table of contents

- What is the main driver for transforming to Industry 4.0 concepts for cell culture applications?
- Please choose the ONE concept you would like to execute for application to cell culture development and manufacturing:
- What do you see the biggest challenge in implementing Industry 4.0 concepts in your day-to-day work?
- When do you expect the Industry 4.0 transformation to be fully achieved for cell culture applications?
- Any final comment?

4 %

### What is the main driver for transforming to Industry 4.0 concepts for cell culture applications?





### Please choose the ONE concept you would like to execute for application to cell culture development and manufacturing: (1/2) a. Industry 4.0 29 % b. Big Data 18 % c. Machine Learning 31 % d. Artificial Intelligence 14 % e. Internet of things 2 %

### Please choose the ONE concept you would like to execute for application to cell culture development and manufacturing: (2/2)

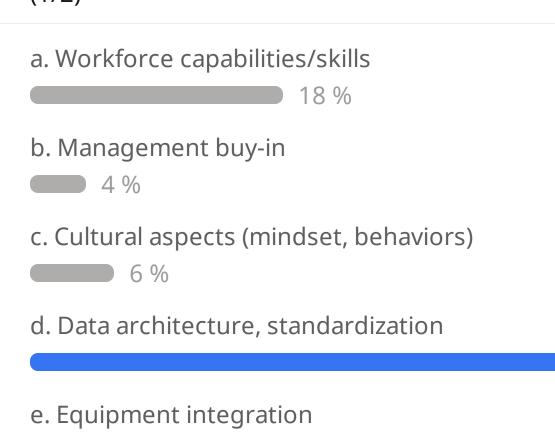


f. Additive Manufacturing (eg 3D printing)

0 %






h. AR/VR



i. Other

2 %

### What do you see the biggest challenge in implementing Industry 4.0 concepts in your day-to-day work? (1/2)





54 %

10 %

### What do you see the biggest challenge in implementing Industry 4.0 concepts in your day-to-day work? (2/2)

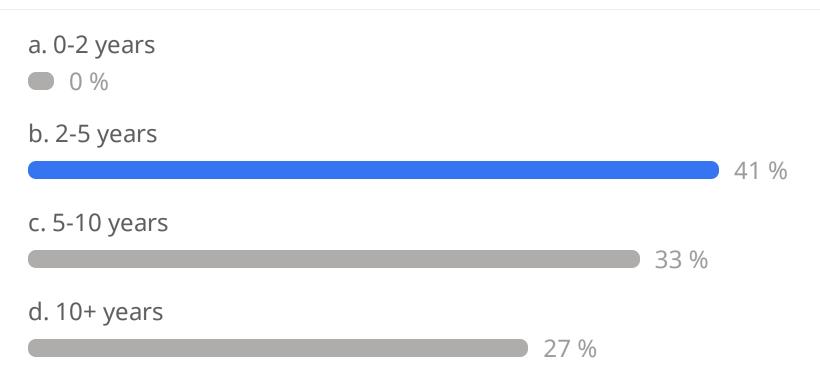


f. Regulatory constraints

0 %

g. Supplier/vendor collaborations

4 %


h. Other

4 %



### When do you expect the Industry 4.0 transformation to be fully achieved for cell culture applications?





# **Any final comment?** (1/2)

### 0 2 5

- None
- What increase in process performance or reliability would make digital twin implementation valuable
- Would be interesting to see how the survey responses change over the next 2 years
- Standardized, open source ontologies
- It would be nice to take a min to discuss the poll. Why did people vote that way? The discussion is more important than the voting itself.

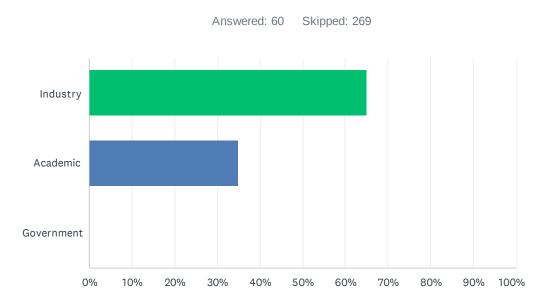
- Can we share these discussions in a white paper? Can we set up shared resources for attendees?
- Please share the information in the group digitally
- Thanks!
- Thanks

- We are embarking on a new frontier
- Automation and control is key
- Sr Management
- Great session, looking forward to seeing how we can integrate this work faster in dev of viral vector work

# **Any final comment?** (2/2)

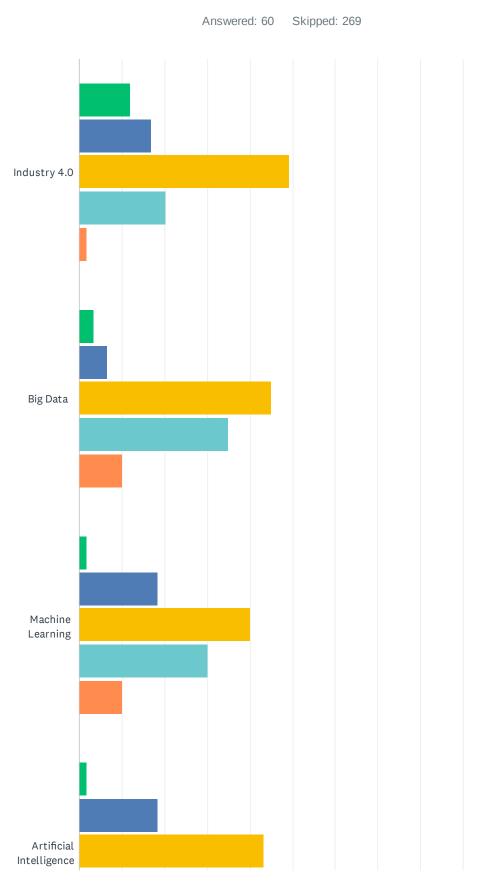


• AI

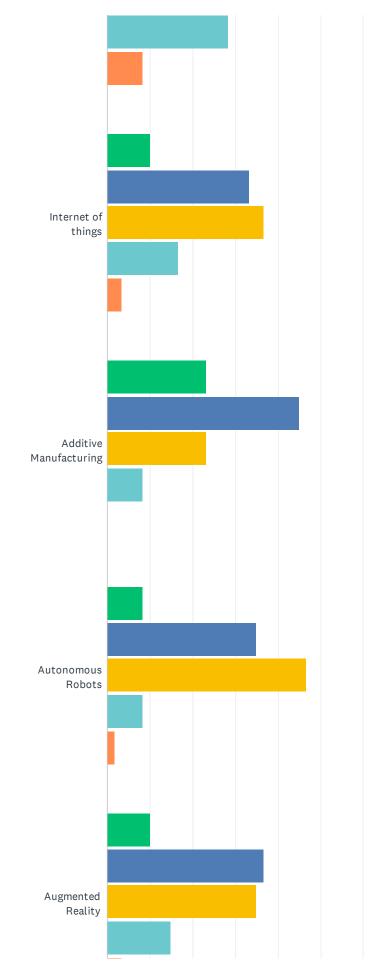

- Thanks 😊
- Better analytics and data infrastructure needed.
- Thanks for organizing
- Thanks!
- Good topic, please revisit in 2 years
- Great session.
- We need to be able to share data safely to get big data.
- Thank you for organising the workshop!
- No
- Thank you for

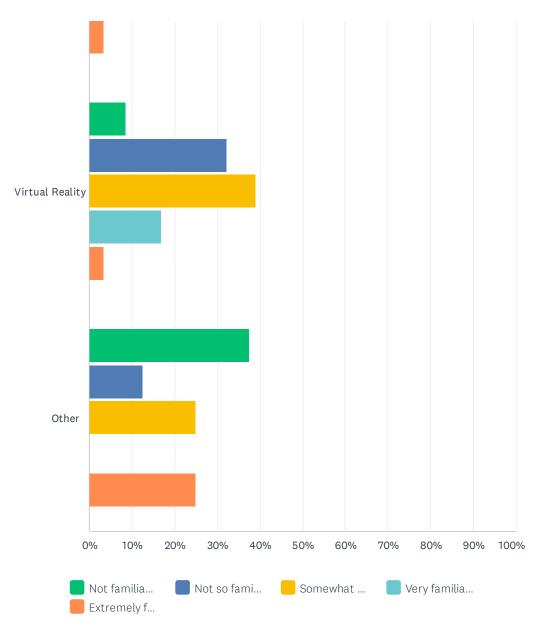
the informative workshop.

- Digital Twins
- None




#### Q38 What best describes your current role (choose one)?





| ANSWER CHOICES | RESPONSES |    |
|----------------|-----------|----|
| Industry       | 65.00%    | 39 |
| Academic       | 35.00%    | 21 |
| Government     | 0.00%     | 0  |
| TOTAL          |           | 60 |

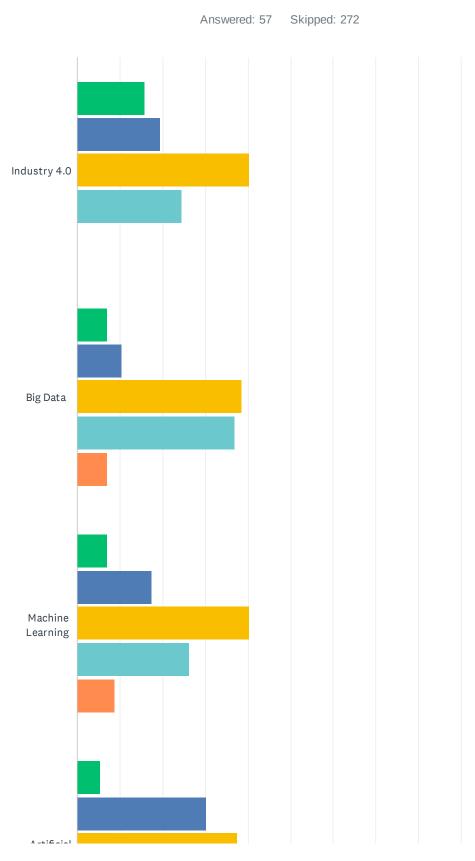
# Q39 Please describe your familiarity with each of the definition and concepts listed below in general



SurveyMonkey

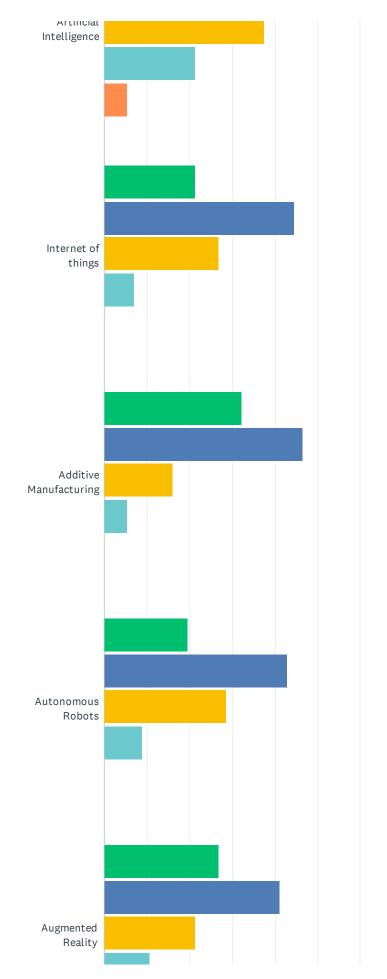


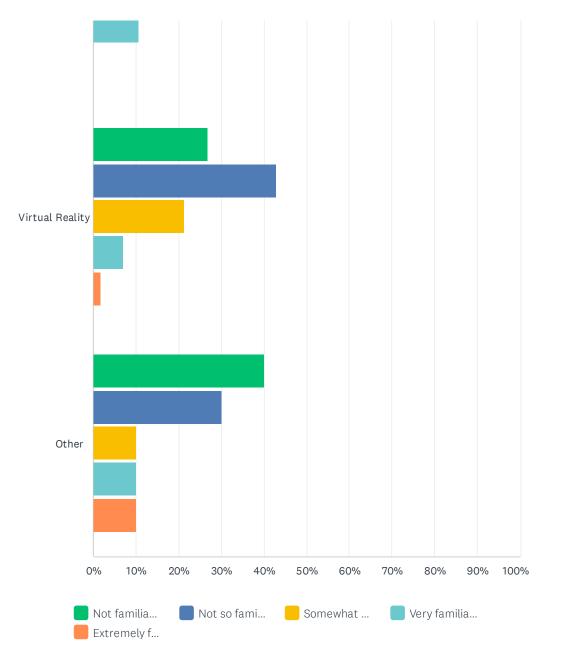



#### CCE XVIII Workshop Survey

#### SurveyMonkey

|                            | NOT<br>FAMILIAR [1] | NOT SO<br>FAMILIAR [2] | SOMEWHAT<br>FAMILIAR [3] | VERY<br>FAMILIAR [4] | EXTREMELY<br>FAMILIAR [5] | TOTAL |
|----------------------------|---------------------|------------------------|--------------------------|----------------------|---------------------------|-------|
| Industry 4.0               | 11.86%<br>7         | 16.95%<br>10           | 49.15%<br>29             | 20.34%<br>12         | 1.69%<br>1                | 59    |
| Big Data                   | 3.33%<br>2          | 6.67%<br>4             | 45.00%<br>27             | 35.00%<br>21         | 10.00%<br>6               | 60    |
| Machine<br>Learning        | 1.67%<br>1          | 18.33%<br>11           | 40.00%<br>24             | 30.00%<br>18         | 10.00%<br>6               | 60    |
| Artificial<br>Intelligence | 1.67%<br>1          | 18.33%<br>11           | 43.33%<br>26             | 28.33%<br>17         | 8.33%<br>5                | 60    |
| Internet of things         | 10.00%<br>6         | 33.33%<br>20           | 36.67%<br>22             | 16.67%<br>10         | 3.33%<br>2                | 60    |
| Additive<br>Manufacturing  | 23.33%<br>14        | 45.00%<br>27           | 23.33%<br>14             | 8.33%<br>5           | 0.00%<br>0                | 60    |
| Autonomous<br>Robots       | 8.33%<br>5          | 35.00%<br>21           | 46.67%<br>28             | 8.33%<br>5           | 1.67%<br>1                | 60    |
| Augmented<br>Reality       | 10.00%<br>6         | 36.67%<br>22           | 35.00%<br>21             | 15.00%<br>9          | 3.33%<br>2                | 60    |
| Virtual Reality            | 8.47%<br>5          | 32.20%<br>19           | 38.98%<br>23             | 16.95%<br>10         | 3.39%<br>2                | 59    |
| Other                      | 37.50%<br>3         | 12.50%<br>1            | 25.00%<br>2              | 0.00%<br>0           | 25.00%<br>2               | 8     |
| # OTH                      | IER (PLEASE SPI     | ECIFY)                 |                          |                      | DATE                      |       |


| π |                                                                       | DAIL              |
|---|-----------------------------------------------------------------------|-------------------|
| 1 | Mechanistic modeling approaches for cellular systems and bioprocesses | 4/14/2023 4:52 AM |
| 2 | Digital twins                                                         | 4/4/2023 10:09 AM |


# Q40 Please describe your familiarity with each of the definition and concepts listed below as they apply to cell culture technology. Please also provide the types of cell culture applications.



SurveyMonkey

#### CCE XVIII Workshop Survey

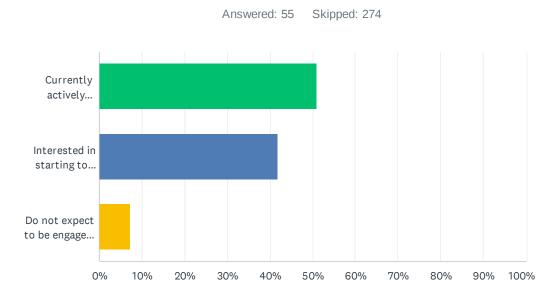




#### CCE XVIII Workshop Survey

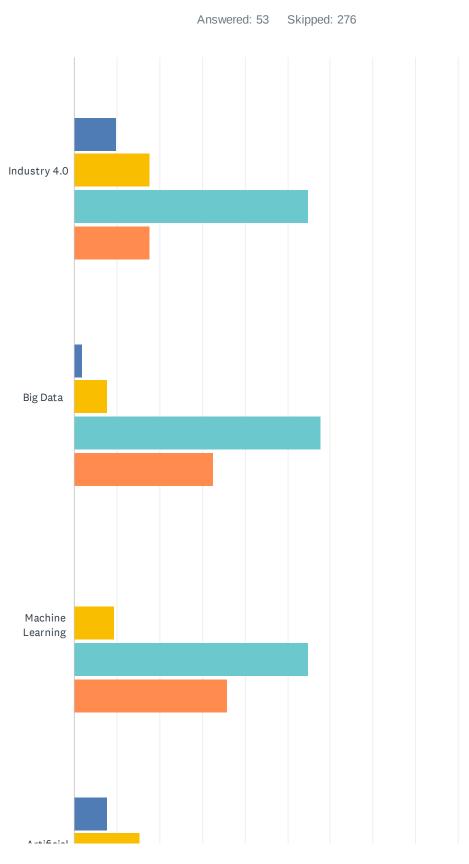
#### SurveyMonkey

|                            | NOT<br>FAMILIAR [1] | NOT SO<br>FAMILIAR [2] | SOMEWHAT<br>FAMILIAR [3] | VERY<br>FAMILIAR [4] | EXTREMELY<br>FAMILIAR [5] | TOTAL |
|----------------------------|---------------------|------------------------|--------------------------|----------------------|---------------------------|-------|
| Industry 4.0               | 15.79%<br>9         | 19.30%<br>11           | 40.35%<br>23             | 24.56%<br>14         | 0.00%<br>0                | 57    |
| Big Data                   | 7.02%<br>4          | 10.53%<br>6            | 38.60%<br>22             | 36.84%<br>21         | 7.02%<br>4                | 57    |
| Machine<br>Learning        | 7.02%<br>4          | 17.54%<br>10           | 40.35%<br>23             | 26.32%<br>15         | 8.77%<br>5                | 57    |
| Artificial<br>Intelligence | 5.36%<br>3          | 30.36%<br>17           | 37.50%<br>21             | 21.43%<br>12         | 5.36%<br>3                | 56    |
| Internet of things         | 21.43%<br>12        | 44.64%<br>25           | 26.79%<br>15             | 7.14%<br>4           | 0.00%<br>0                | 56    |
| Additive<br>Manufacturing  | 32.14%<br>18        | 46.43%<br>26           | 16.07%<br>9              | 5.36%<br>3           | 0.00%<br>0                | 56    |
| Autonomous<br>Robots       | 19.64%<br>11        | 42.86%<br>24           | 28.57%<br>16             | 8.93%<br>5           | 0.00%<br>0                | 56    |
| Augmented<br>Reality       | 26.79%<br>15        | 41.07%<br>23           | 21.43%<br>12             | 10.71%<br>6          | 0.00%<br>0                | 56    |
| Virtual Reality            | 26.79%<br>15        | 42.86%<br>24           | 21.43%<br>12             | 7.14%<br>4           | 1.79%<br>1                | 56    |
| Other                      | 40.00%<br>4         | 30.00%<br>3            | 10.00%<br>1              | 10.00%<br>1          | 10.00%<br>1               | 10    |
| # OTH                      | IER (PLEASE SPI     | ECIFY)                 |                          |                      | DATE                      |       |


| # | OTHER (PLEASE SPECIFY)                                | DATE              |
|---|-------------------------------------------------------|-------------------|
| 1 | Automating workflows for bioprocess/media development | 4/14/2023 4:52 AM |
| 2 | Digital twins                                         | 4/4/2023 10:09 AM |

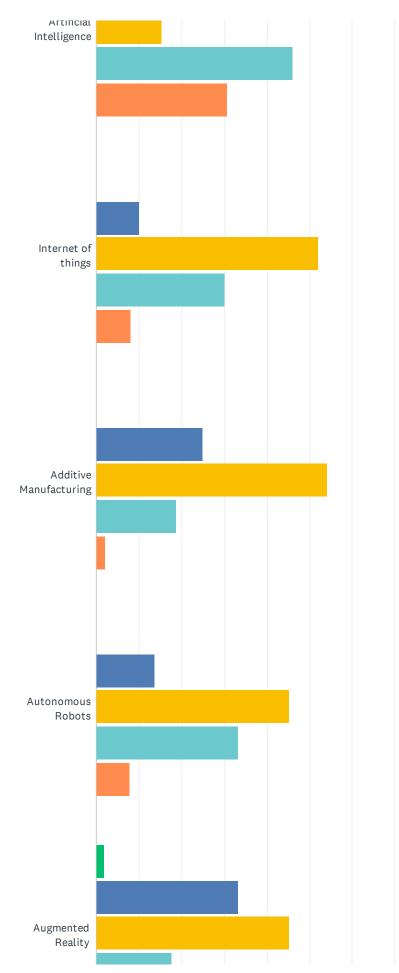
# Q41 List examples of specific cell culture applications for Question 3 above:

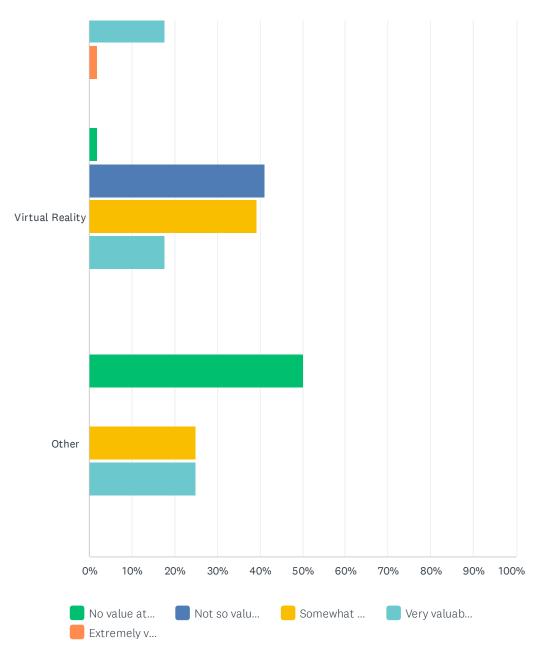
Answered: 23 Skipped: 306


| #  | RESPONSES                                                                                                                                                                                                                                                                                                                | DATE              |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 1  | * Automated workflows for bioprocess/media development (devices + analytics + software workflows)                                                                                                                                                                                                                        | 4/14/2023 4:52 AM |
| 2  | CHO/HEK cell lines                                                                                                                                                                                                                                                                                                       | 4/13/2023 6:20 PM |
| 3  | Use of MVDA software to analyze cell culture data. Use hybrid models to build digital twins.                                                                                                                                                                                                                             | 4/13/2023 4:39 PM |
| 4  | cell culture modeling as a digital twin                                                                                                                                                                                                                                                                                  | 4/13/2023 4:16 PM |
| 5  | Rapid TT based on platform knowledge, multi-scale modeling, and machine learning; in the extreme one could envision going from target ID to product in vial based only on in silico predictions Adaptive control of bioreactor to enable manufacturing of consistent product quality despite variations in raw materials | 4/13/2023 4:16 PM |
| 6  | Modeling N-linked glycosylation by using neural networks/dynamic kriging                                                                                                                                                                                                                                                 | 4/13/2023 4:14 PM |
| 7  | Potential can use ML to predict process performance with additional genomic/proteomic data                                                                                                                                                                                                                               | 4/13/2023 3:48 PM |
| 8  | Image analysis of single cell clone outgrowth and ML                                                                                                                                                                                                                                                                     | 4/12/2023 6:19 AM |
| 9  | Augmented reality as part of SOPs. Virtual reality for training. Machine learning for black and gray models. Big data from genomics and transcriptomics tools.                                                                                                                                                           | 4/6/2023 7:05 PM  |
| 10 | Hybrid modeling of bioprocess Multivariate analysis on cell culture data                                                                                                                                                                                                                                                 | 4/5/2023 3:56 PM  |
| 11 | Omics data analysis, model-based experimental design                                                                                                                                                                                                                                                                     | 4/4/2023 6:55 PM  |
| 12 | Hybrid modeling to accelerate process devleopment                                                                                                                                                                                                                                                                        | 4/4/2023 1:34 PM  |
| 13 | CAR-T cell growth in bioreactors                                                                                                                                                                                                                                                                                         | 4/4/2023 10:09 AM |
| 14 | Our current application is limited to real time data monitoring, visualization, and potentially process adjustment based on predetermined process parameter control ranges. I am interested in learning more about other applications, particularly ML and AI.                                                           | 4/3/2023 5:13 PM  |
| 15 | Digital twins of cell culture processes                                                                                                                                                                                                                                                                                  | 4/3/2023 4:54 PM  |
| 16 | intelligent sensors/integrated transmitters with self-diagnosis and reporting training on SOPs using virtual reality headsets Softsensors Metabolic/hybrid models used for predictive cell culture automation                                                                                                            | 4/3/2023 3:24 PM  |
| 17 | Machine learning - Supervised learning for cell culture performance prediction Machine learning<br>- Deep learning for image-based processing of cell culture microscopy applications. Big data -<br>Process train sensing Technlogies and data processing for supervision and control                                   | 4/3/2023 11:58 AM |
| 18 | Use of machine learning for soft sensor development. Use of exploratory data analysis to understand process impact on outcomes in early process development and for outlier detection at manufacturing scale.                                                                                                            | 4/3/2023 10:24 AM |
| 19 | Cell line development                                                                                                                                                                                                                                                                                                    | 4/3/2023 9:28 AM  |
| 20 | omics data are important for characterizing clones and molecular pathways                                                                                                                                                                                                                                                | 4/3/2023 3:50 AM  |
| 21 | Perfusion, continuous downstream processing. Applications to cell and Gene therapies (early)                                                                                                                                                                                                                             | 4/2/2023 2:29 PM  |
| 22 | Model predictive control, process development prediction tools, predictive clone selection                                                                                                                                                                                                                               | 4/1/2023 2:14 PM  |
| 23 | PAT- Rama process modelling                                                                                                                                                                                                                                                                                              | 3/31/2023 6:15 PM |

# Q42 Considering the list of concepts in the previous questions, what is your level of engagement of Industry 4.0 topics within your current role?




| ANSWER CHOICES                                                              | RESPONSES |    |
|-----------------------------------------------------------------------------|-----------|----|
| Currently actively engaged in one or more of the concepts listed            | 50.91%    | 28 |
| Interested in starting to participate in one or more of the concepts listed | 41.82%    | 23 |
| Do not expect to be engaged in near-term (e.g. in 2 years)                  | 7.27%     | 4  |
| TOTAL                                                                       |           | 55 |


# Q43 On a scale of 1 to 5, how do you perceive the potential for these concepts to add value or drive solutions to common challenges in cell culture process development or manufacturing?

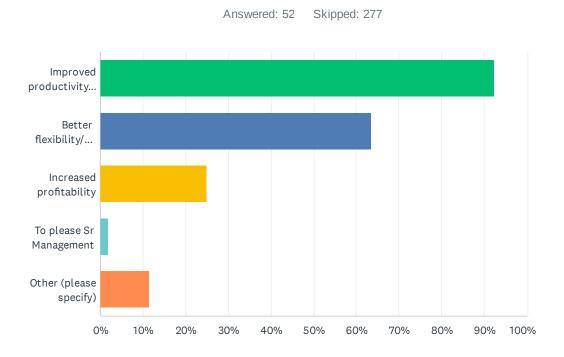


SurveyMonkey

#### CCE XVIII Workshop Survey



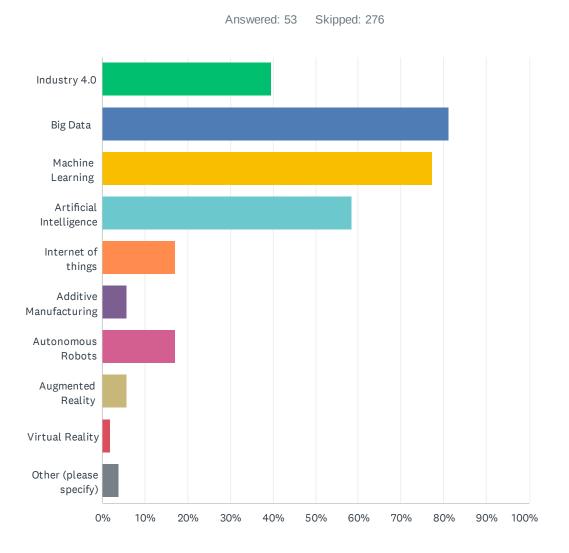



#### CCE XVIII Workshop Survey

#### SurveyMonkey

|                            | NO VALUE AT<br>ALL [1] | NOT SO<br>VALUABLE [2] | Somewhat<br>Valuable [3] | VERY<br>VALUABLE [4] | EXTREMELY<br>VALUABLE [5] | TOTAL |
|----------------------------|------------------------|------------------------|--------------------------|----------------------|---------------------------|-------|
| Industry 4.0               | 0.00%<br>0             | 9.80%<br>5             | 17.65%<br>9              | 54.90%<br>28         | 17.65%<br>9               | 51    |
| Big Data                   | 0.00%                  | 1.92%<br>1             | 7.69%<br>4               | 57.69%<br>30         | 32.69%<br>17              | 52    |
| Machine<br>Learning        | 0.00%                  | 0.00%<br>0             | 9.43%<br>5               | 54.72%<br>29         | 35.85%<br>19              | 53    |
| Artificial<br>Intelligence | 0.00%<br>0             | 7.69%<br>4             | 15.38%<br>8              | 46.15%<br>24         | 30.77%<br>16              | 52    |
| Internet of things         | 0.00%<br>0             | 10.00%<br>5            | 52.00%<br>26             | 30.00%<br>15         | 8.00%<br>4                | 50    |
| Additive<br>Manufacturing  | 0.00%                  | 25.00%<br>12           | 54.17%<br>26             | 18.75%<br>9          | 2.08%<br>1                | 48    |
| Autonomous<br>Robots       | 0.00%<br>0             | 13.73%<br>7            | 45.10%<br>23             | 33.33%<br>17         | 7.84%<br>4                | 51    |
| Augmented<br>Reality       | 1.96%<br>1             | 33.33%<br>17           | 45.10%<br>23             | 17.65%<br>9          | 1.96%<br>1                | 51    |
| Virtual Reality            | 1.96%<br>1             | 41.18%<br>21           | 39.22%<br>20             | 17.65%<br>9          | 0.00%<br>0                | 51    |
| Other                      | 50.00%<br>2            | 0.00%                  | 25.00%<br>1              | 25.00%<br>1          | 0.00%<br>0                | 4     |

| # | OTHER (PLEASE SPECIFY) | DATE              |
|---|------------------------|-------------------|
| 1 | Digital twins          | 4/4/2023 10:09 AM |

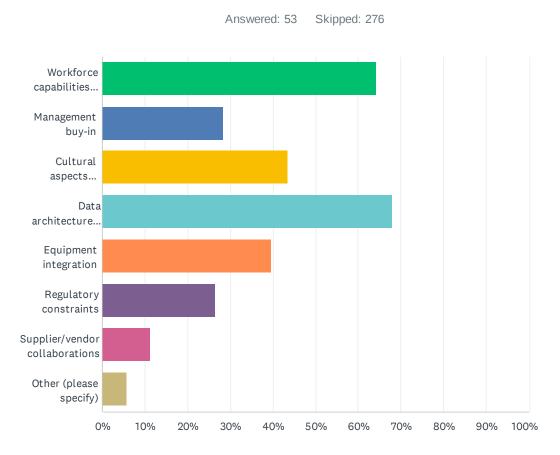

## Q44 What are the top 2 main drivers for transforming to Industry 4.0 concepts for cell culture applications (choose only two)?



| ANSWER CHOICES                   | RESPONSES |    |
|----------------------------------|-----------|----|
| Improved productivity/efficiency | 92.31%    | 48 |
| Better flexibility/agility       | 63.46%    | 33 |
| Increased profitability          | 25.00%    | 13 |
| To please Sr Management          | 1.92%     | 1  |
| Other (please specify)           | 11.54%    | 6  |
| Total Respondents: 52            |           |    |

| # | OTHER (PLEASE SPECIFY)                                                                            | DATE               |
|---|---------------------------------------------------------------------------------------------------|--------------------|
| 1 | Better control of product quality                                                                 | 4/14/2023 10:08 AM |
| 2 | Speed to clinic                                                                                   | 4/14/2023 5:23 AM  |
| 3 | In this risk-averse industry: reduce risk of failures ;-)                                         | 4/14/2023 4:52 AM  |
| 4 | Improved access to cell and gene therapies                                                        | 4/4/2023 10:09 AM  |
| 5 | Reduction in timelines for process development, characterization and control strategy development | 4/4/2023 2:32 AM   |
| 6 | Faster speed to market/failure                                                                    | 4/3/2023 3:24 PM   |

# Q45 For the CCE Industry 4.0 Workshop, please choose the top three concepts you would like to see discussed in terms of their application to cell culture development and manufacturing:

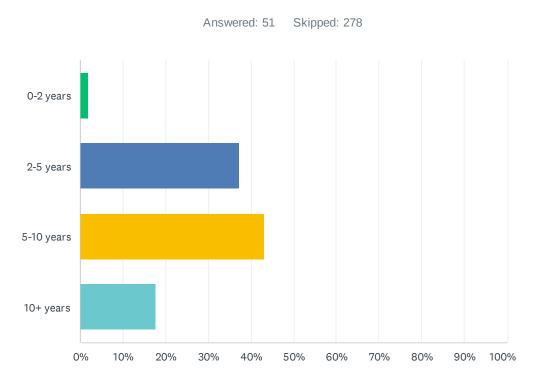



78/128

#### CCE XVIII Workshop Survey

| ANSWER C              | HOICES                                                                                                                                  | RESPONSES |                   |    |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------|----|
| Industry 4.0          |                                                                                                                                         | 39.62%    |                   | 21 |
| Big Data              |                                                                                                                                         | 81.13%    |                   | 43 |
| Machine Le            | arning                                                                                                                                  | 77.36%    |                   | 41 |
| Artificial Inte       | elligence                                                                                                                               | 58.49%    |                   | 31 |
| Internet of t         | hings                                                                                                                                   | 16.98%    |                   | 9  |
| Additive Ma           | nufacturing                                                                                                                             | 5.66%     |                   | 3  |
| Autonomous            | s Robots                                                                                                                                | 16.98%    |                   | 9  |
| Augmented             | Reality                                                                                                                                 | 5.66%     |                   | 3  |
| Virtual Real          | ity                                                                                                                                     | 1.89%     |                   | 1  |
| Other (pleas          | e specify)                                                                                                                              | 3.77%     |                   | 2  |
| Total Respondents: 53 |                                                                                                                                         |           |                   |    |
|                       |                                                                                                                                         |           |                   |    |
| #                     | OTHER (PLEASE SPECIFY)                                                                                                                  |           | DATE              |    |
| 1                     | How big can Big Data be: a) Do we know what are the right things to then get enough data points to leverage the power of above approach |           | 4/14/2023 4:52 AM |    |
| 2                     | Digital twins                                                                                                                           |           | 4/4/2023 10:09 AM |    |

#### Q46 What do you see as some of the biggest challenges in implementing Industry 4.0 concepts in your day-to-day work (check top 3)?

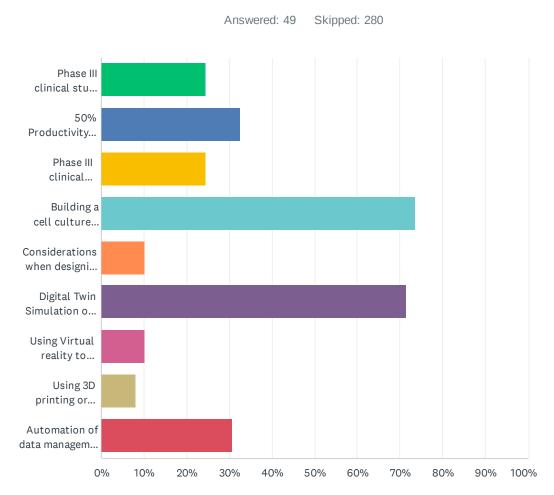



| ANSWER CHOICES                        | RESPONSES |    |
|---------------------------------------|-----------|----|
| Workforce capabilities/skills         | 64.15%    | 34 |
| Management buy-in                     | 28.30%    | 15 |
| Cultural aspects (mindset, behaviors) | 43.40%    | 23 |
| Data architecture, standardization    | 67.92%    | 36 |
| Equipment integration                 | 39.62%    | 21 |
| Regulatory constraints                | 26.42%    | 14 |
| Supplier/vendor collaborations        | 11.32%    | 6  |
| Other (please specify)                | 5.66%     | 3  |
|                                       |           |    |

Total Respondents: 53

| # | OTHER (PLEASE SPECIFY)                                                                                                                        | DATE              |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 1 | Data quality: methods are proven to work on technical systems - but currently doubting we have the right data in place to reap their benefits | 4/14/2023 4:52 AM |
| 2 | Complexity of biological systems                                                                                                              | 4/10/2023 3:36 PM |

# Q47 When do you expect the Industry 4.0 transformation to be fully achieved for cell culture applications, and why did you choose this timeframe?




| ANSWER CHOICES | RESPONSES |    |
|----------------|-----------|----|
| 0-2 years      | 1.96%     | 1  |
| 2-5 years      | 37.25%    | 19 |
| 5-10 years     | 43.14%    | 22 |
| 10+ years      | 17.65%    | 9  |
| TOTAL          |           | 51 |

| # | REASON (PLEASE SPECIFY)                                                                                                                                                                                                                                                                      | DATE               |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 1 | Confident we can solve the technical deployment quickly, but need more time to identify and collect the right data that we need to support decision-making - so we also understand WHY an AI would recommend certain decisions - especially for sparse data availability like cell therapies | 4/14/2023 4:52 AM  |
| 2 | momentum                                                                                                                                                                                                                                                                                     | 4/13/2023 4:16 PM  |
| 3 | There is a true willingness of the management to go towards Industry 4.0                                                                                                                                                                                                                     | 4/13/2023 10:49 AM |
| 4 | Access to more biomanufacturing data                                                                                                                                                                                                                                                         | 4/10/2023 3:36 PM  |
| 5 | Not all historical data can be used in data science. Required new experiments to collect the right data for model construction.                                                                                                                                                              | 4/5/2023 3:56 PM   |
| 6 | It takes a long time to enact change in legacy facilities. Sites need drivers to enact change<br>and any changes need to be embedded in process development with alignment to be received<br>by their partner manufacturing facility.                                                        | 4/4/2023 1:34 PM   |

| 7  | There is a long way to go.                                                                                                                                                                                                                                                                                                        | 4/4/2023 10:09 AM |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 8  | For industry 4.0, the connectivity, sensor technology and visualization have been or can be achieved in shorter time frame perhaps, but the automated and "intelligent" process adjustment, i.e. degree of "decision making on its own", and what technology is used to enable that, that determines the complexity and timeline. | 4/3/2023 5:13 PM  |
| 9  | Industry is slow to adopt                                                                                                                                                                                                                                                                                                         | 4/3/2023 4:54 PM  |
| 10 | mindset                                                                                                                                                                                                                                                                                                                           | 4/3/2023 3:24 PM  |
| 11 | Complexity of multi-scale cell culture systems in terms of cell physiology, cell metabolism, cell-process interface, data cost/throughput, etc                                                                                                                                                                                    | 4/3/2023 11:58 AM |
| 12 | slow adaption of new concepts in the industry                                                                                                                                                                                                                                                                                     | 4/3/2023 11:29 AM |
| 13 | I think machine learning models need to improve interpretability so as to be implemented at production scale.                                                                                                                                                                                                                     | 4/3/2023 10:24 AM |
| 14 | Complexity                                                                                                                                                                                                                                                                                                                        | 4/2/2023 2:29 PM  |
| 15 | Capability building and regulatory acceptance                                                                                                                                                                                                                                                                                     | 4/2/2023 11:14 AM |
| 16 | Would have chosen sooner, but lots of inertia within established systems.                                                                                                                                                                                                                                                         | 4/1/2023 2:14 PM  |
| 17 | already roling out                                                                                                                                                                                                                                                                                                                | 4/1/2023 3:54 AM  |
| 18 | Capability still under development                                                                                                                                                                                                                                                                                                | 3/31/2023 6:24 PM |
| 19 | Equipment integration and data architecture standardization not ready yet.                                                                                                                                                                                                                                                        | 3/31/2023 6:15 PM |
| 20 | Business wants low risk and low investment. This jump to 4.0 seems like high risk and high up front investment with minimal understanding of full potential improvements                                                                                                                                                          | 3/31/2023 5:37 PM |

# Q48 Which of the following case studies would you be most interested in discussing during the Industry 4.0 workshop?



| ANSWER CHOICES                                                                                          | RESPONS | SES |
|---------------------------------------------------------------------------------------------------------|---------|-----|
| Phase III clinical study failure due to sudden HCP increase in mAb products                             | 24.49%  | 12  |
| 50% Productivity decrease in commercial campaign (as an example)                                        | 32.65%  | 16  |
| Phase III clinical manufacturing failure due to potentially raw material variability (as an example)    | 24.49%  | 12  |
| Building a cell culture model for adaptive, predictive control                                          | 73.47%  | 36  |
| Considerations when designing a new facility to cater the needs of future                               | 10.20%  | 5   |
| Digital Twin Simulation of Cell Culture Processes to reduce development timelines                       | 71.43%  | 35  |
| Using Virtual reality to train engineers/scientist for GMP cell culture facility                        | 10.20%  | 5   |
| Using 3D printing or adaptive manufacturing to enhance cell culture engineering and process development | 8.16%   | 4   |
| Automation of data management through augmented digitization                                            | 30.61%  | 15  |
| Total Respondents: 49                                                                                   |         |     |

#### 84 / 128

# Q49 What is the key learning or takeaway you would like to see from the Industry 4.0 workshop?

Answered: 24 Skipped: 305

| #  | RESPONSES                                                                                                                                                                                               | DATE               |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 1  | Better grasp of what others are doing                                                                                                                                                                   | 4/14/2023 5:23 AM  |
| 2  | What do people think are the key limitations 1 for succeeding in this field - where should we focus on solving problems in the net 5 years?                                                             | 4/14/2023 4:52 AM  |
| 3  | How to properly use big data                                                                                                                                                                            | 4/13/2023 6:20 PM  |
| 4  | building predictive digital twins for cell culture                                                                                                                                                      | 4/13/2023 4:16 PM  |
| 5  | Examples of application of mathematical models for process intensification/optimization                                                                                                                 | 4/13/2023 4:14 PM  |
| 6  | Details on how other users implemented this so we have actionable things to work towards                                                                                                                | 4/13/2023 3:48 PM  |
| 7  | Examples according to which using a Digital Twin or a cell culture model did improve the performance (yield or reliablility) of a cell culture process.                                                 | 4/13/2023 10:49 AM |
| 8  | what is meant by Industry 4.0 and practical applications                                                                                                                                                | 4/6/2023 7:05 PM   |
| 9  | Examples of how the industry uses Industry 4.0 in manufacturing, process/cell-line development.                                                                                                         | 4/5/2023 3:56 PM   |
| 10 | Familiarize myself                                                                                                                                                                                      | 4/4/2023 2:16 PM   |
| 11 | A vision for how to attain Industry 4.0                                                                                                                                                                 | 4/4/2023 1:34 PM   |
| 12 | How important are digital twins to industry?                                                                                                                                                            | 4/4/2023 10:09 AM  |
| 13 | I would like to see some specific examples and in particular, how ML and AI tools are used for any "decision making" processes.                                                                         | 4/3/2023 5:13 PM   |
| 14 | Concrete examples                                                                                                                                                                                       | 4/3/2023 4:54 PM   |
| 15 | what is the realistic effort required for an average cell culture team to start achieving results, and how many data scientists might we need                                                           | 4/3/2023 3:24 PM   |
| 16 | Case study of real-world problem addressing the need, opportunity, strategy, approach, team development, deployment, challenges and opportunities.                                                      | 4/3/2023 11:58 AM  |
| 17 | How should we utilize early process development modeling to improve our understanding during scale up or technology transfer projects.                                                                  | 4/3/2023 10:24 AM  |
| 18 | Steps for process automation                                                                                                                                                                            | 4/3/2023 9:28 AM   |
| 19 | How to fasten implementation                                                                                                                                                                            | 4/2/2023 2:29 PM   |
| 20 | Do we all have similar visions for industry 4.0 and are we all facing the same headwinds.                                                                                                               | 4/1/2023 2:14 PM   |
| 21 | How to leverage current technology. Future directions to implement technology into development and manufacture.                                                                                         | 3/31/2023 6:24 PM  |
| 22 | Challenges and Road map                                                                                                                                                                                 | 3/31/2023 6:15 PM  |
| 23 | How to plan ahead for implementation of automation in the future. How do we develop processes now that can be updated with automation rather than needing to go through major process/equipment changes | 3/31/2023 5:37 PM  |
| 24 | Strategy for implementation                                                                                                                                                                             | 3/31/2023 5:03 PM  |